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The dependence of the inhomogeneity variance has been derived in the paper on the size of the 
sample for granular perfectly mixed materials as well as for imperfectly mixed materials. 

Inhomogeneity of granular materials has been treated in a voluminous literature. 
Heterogeneous powder mixtures have been studied and theoretical relations have 
been derived for the variance of inhomogeneity due to the fluctuation of the number 
of particles of different phases in the analyzed sample1 - 3 . The study of the dependence 
of the inhomogeneity variance on the amount of the sample or the number of par
ticles in the sample has lead to equations indicating indirect proportionality between 

-the inhomogeneity variance and the size of the sample or the number of particles 
composing the sample. 

For real granular materials, however, the inhomogeneity variance exhibits higher 
higher values in dependence on the size of the sample than those corresponding to 
the above mentioned dependence4 - 6 . This discrep~ncy is being explained4 ,7-9 by 
statistical dependence of composition of neighbouring particles or neighbouring 
samples. 

Statistical dependence of composition of neighbouring samples can be supressed or 
eventually eliminated by mixing the material. The state of a perfectly mixed material 
has been defined in ref.5 as one when k random samplings yields the results Xl, ... , X k 

(the deviations of concentration from the mean) as k independent statistical variables 
with the same normal distribution. 

A review of the literature devoted to inhomogeneity of granular materials has been 
presented in ref.l0. This reference lists also a series of papers dealing with technical 
aspects of mixing granular materials and the derivation of criteria for a quantitative 
assessment of the degree of uniformity. 

In this paper we shall deal with perfectly mixed materials prepared by crushing 
compact materials. It will be assumed that the inhomogeneity variance, corresponding 
to samples equivalent in size to a single particle of the granular material, has been 
determined from the course of concentration in the compact material using the method 
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described in ref.9. From this basic tenet we shall start in the derivation of the depen
dence of the inhomogeneity variance on the size of the sample. For imperfectly mixed 
material we shall investigate the correlation function and in the derivation of the de
pendence of the inhomogeneity variance on the size of the sample we shall make use 
of the approach published elsewhere9. 

THEORETICAL 

Perfectly Mixed Materials 

The expression for the dependence of the inhomogeneity variance on the size of the 
sample for a granular material composed of particles of different size and specific 
weight will be derived by steps. First, we shall assume that all particles in ,the granular 
material are of the same size, shape and specific weight s. Let us denote by v volume 
of the particle, D2( v) the inhomogeneity variance of a set of single-particle samples 
(determined in accord with reU) and let D2(kv) denote the inhomogeneity variance 
of a set of k-particle samples. The deviation of the concentration of the analyzed ele
ment e from the mean E(e) == c equals for the k-particle sample to 

be(kv) = k-l[be(v, 1) + be(v, 2) + ... + 6c(v, k)] , (1) 

where be(v, i) is the concentration deviation from c in the i-th particle of the sample. 
In k-particle samples taken from perfectly mixed materials the composition of 

individual particles is statistically independent (this means that for the correlation 
coefficient Rjj' = E[be(v, i) be(v, if)] of an arbitrary pair of particle (i "# if) Rjj' = 0; 
for individual particles (i = if) then E[6c(V, 1)2 == Rll = E[be(v, 2))2 == R22 = 

= ... = E[be(v, k)y == Rkk = D2(V)). On raising Eq. (1) to the second power and 
averaging, an expression for the sought variance D2(kv) is obtained: 

(2) 

Further we shall examine granular materials consisting of particles of the same 
specific weight but different size and shape. The inhomogeneity variance of a set 
of samples ill of the same weight GO) (hence the same volume VOl) composed of different 
number of particles of various size can be calculated as follows: The particles are 
divided into w classes depending on their size and shape. Each class of particles iden
tical as to their volume and shape is assigned its single-particle variance D2(V I) 

using the parameters of the compact material. 1 = 1,2, ... , w is the index of the class 
and VI is the volume of the particles of the I-th class. 

Let in a certain sample ill of volume VOl be klp particles of the first class (volume Vl)' 
kzp of particles of the second class (volume vz), ... , kwp particles of the w-th class 
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(volume vw ). /3 is the index of possible alternatives of the ratio kiP: k 2P : ... : kwp 

of the numbers kIP constrained by the condition kl pVI + k2pV2 + ... + kwpvw = V",. 
In this sample co the deviation of concentration from c is then given by 

bcp(V",) = V",-I{v1[bc(v l , 1) + ... + bc(vI, kiP)] + ... + vw[&(vw, 1) + ... + 
+ &(vw , kwp)]} . (3) 

Let us consider now a set of samples co such that in each sample the number of 
particles of the same class is given by the same number kl p, the number of particles 
of the second class is given by the same number k2P' etc. The deviations expressed 
in Eq. (3) have in this set (see the derivation of Eq. (2) for the deviations (1)) the 
variance: 

In the general case when the number of particles of the same class is not in all 
samples the same we shall consider a set of N samples of which N p has the same com
bination of /3 numbers k\ p, k 2p, k3P ... , kwp. Let in this sample be p such combinations 

p 

(/3 = 1, 2, ... , p; L N p = N). The inhomogeneity variance of this sample is found 
P=l 

by determining the deviations bc in individual samples with the aid of the classic 
N 

expression D2(V",) = N- I L (bc)~. The sum of square deviations (bc)~ corresponding 
i = l 

to the samples of the same combination /3 can be estimated by the expression N ~DHV",) 
where the variance D~(V",) is given by Eq. (4). The inhomogeneity variance of the 
set of N samples is then given by 

(5) 

p 

The expression L klpN piN indicates the average number of particles of the l-th 
P=l 

class in a single sample of our set of N samples. Let us denote this quantity by k~. 
Thus 

w 

D2(V",) = L (v,IV",)2 D2(V I) k; . (6) 
1=1 

The variance (6) thus depends only on the average representation of the classes k; in 
the whole set of samples. On the contrary, the representation of the classes in indi-
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vidual samples is immaterial. For example, a set, whose numbers of particles in indi
vidual classes are given in each sample (volume V.,) by the same numbers k;, has the 
same inhomogeneity variance as a set of samples (taken from the same granular 
material, volume Veo) in which each sample consists of particles of one class only and 
number of samples, N 1, consisting of particles ofl-th class, is given by N1(Veolv l ) = Nk; 
(N is the total number of samples in the set). 

If we take from the same material instead of the samples w n-times larger samples 
of volume n Vro and denote by K; the average number of the particles of the I-th 
class in the set of these samples the inhomogeneity variance of this set is then given, 
according to Eq. (6), by: 

D2(nVro) = L [vd(nV.,)]2 D2(V I) K; . (7) 
1=1 

The variance D2(nV.,) is n-times smaller than D2(Vco) if for all 1 we may writeKi = 

= nk;. Unless this conditions is fulfilled we may find deviations in the dependence 
of the inhomogeneity variance on the size of the sample from the curve of the type 
lIn (for materials perfectly mixed) even for a sufficient number of samples forming 
the sets. Thus care must be taken to keep the ratio of the numbers k~ : k; : ... : k~ 
and K~ : K; : ... : K~ very close to the ratio valid for the number of particles of 
individual classes in the bulk material. 

In the following part we shall deal with the more general case of granular materials 
with unequal specific weight of particles. The cause of unequal specific weight may be 
primarily the unstationary course of concentrations of various elements in the compact 
materials from which the granular material was prepared. We shall assume that the 
specific weight of a given particle equals its regression value, Sf> in that point within 
the compact material where the particle was originally located. Random fluctuation 
of the real specific weights shall not be considered. (If the particles of the granular 
material are smaller than the size of the grain of individual phases of the compact 
material we shall identify Sr with the mean course of the specific weight of the phases
an example of this type is treated in the discussion). 

Let us divide the compact material from which our granular material is to be 
prepared to u regions in such a manner that within each region the regression specific 
weight, Sr' as well as the regression concentration, Cn take constant values. Thus in 
the j-th region (j = 1,2, ... , u) we have Sr = Srj and Cr = crj • Moreover, the regions 
are taken such that the fluctuations of the concentration C within the region be 
stationary. The concentration deviations from the mean, c, measured in the j-th 
region of the compact material for the set of samples of identical shape and volume v 
shall be denoted bclv). Corresponding variance of inhomogeneity for this set shall 
be denoted by Df(v). Let us prepare from the just characterized material a granular 
material consisting of particles of identical shape and volume (the specific weight of 
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each particle equals some of the values Srj)' The inhomogeneity variance of samples 
of weight Goo shall be derived in an analogous manner as Eq. (6). However, instead 
of the classes of particles of identical size we shall consider classes of particles of 
identical weight. Instead of Eq. (3) we shall start from 

(8) 

where gj = VSrj is the weight of a particle from the j-th region. 

Analogous arrangements to those leading to Eq. (6) lead also to: 

(9) 

Let us designate by VM the volume of the compact material crushed to give the 
studied granular material. l'J is the volume of the j-th region. The ratio Vj = l'J/VM is 
then proportional to the number of particles formed by the material from the j-th 
region. 

In the following we shall assume that the numbers kj equal their mean values kj • 

u 

Thus kj = Kj = KVj, where k = L kj is the mean number of particles in the samples 
j;l 

of our set. On denoting further by g = Goo/K the mean weight of the par-
u 

ticle and by s the mean specific weight of the material (s = L VjSrj , g = vs), Eq. (9) 
may be rearranged to the form: j;l 

D2(Goo) = K- 1 t vlSrj/S)2 DJev) = K- 1 D2(g). (10) 
j;l 

In the calculation of the inhomogeneity variance of granular materials with unequal 
specific weight of particles the principal datum thus required from the parameters 

of the compact material9 is the modified single-particle variance D2(g) = L vlS r )S)2 . 
j;l 

. DJ( v). The inhomogeneity variance in the set of single-particle samples in the com-

pact material is, of course, given by D2(V) = ± vjDJ(v). The difference between D2(V) 
j=l 

and D2(g) rests in that the variance D2( v) corresponds to the set of samples of the 
same volume and shape while the variance D2(g) is an extrapolation to k = 1 of the 
variance corresponding to the set of equal-weight samples. (D2(V) thus plays a role in 
compact materials while D2(g) is important for granular materials). 

The the general case of a granular material formed by particles of various sizes and 
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specific weight we may proceed in the derivation of inhomogeneity variance similarly 
as in the preceding cases: Divide particles to w classes according to their size (and 
shape) and each size class divide further into u classes according to the specific weight. 
The final equation we obtain is of the same form as Eq. (6) except that it contains GO) 
instead of Vand instead of the volume of particles I-th size class, VI' we have their mean 
weight gl = svl. Also, instead of the single-particle variance D2(VI) the equation 

contains the modified single-particle variance D2(gl) = I vlsrIs)2 Df(v,): 
j=l 

D2( GO)) = L (gdGO))2 D2(gl) k; . (11) 
1=1 

The variance (11) again does not depend on the representation of the sjze classes in 
individual samples but only on their mean representation k; in the whole set. About 
the representation of the different specific weights, Srj' among the particles of the 
same size class we have assumed in the derivation of Eq. (11) that it is directly pro
portional to the volume concentration of the regions Vj (j = 1,2, ... u). 

About the relation between the ratios k~ : k; : k; : ... : k~ or K~ : K; : ... : K~ 
and the dependence of the variance (11) on the size of the sample (Ga) we may say the 
same as that mentioned in connection with Eq. (7). 

Imperfectly Mixed Materials 

For imperfectly mixed materials the modified variance of single-particle samples 
D2(g) is no longer the only determining factor for the course of the dependence of 
the inhomogeneity variance on the size of the sample. The other factor entering is 
the statistical dependence of compositions of close particles or samples and also the 
instationarity of the course of concentration and with it associated regression variance 
may become effective. 

For a quantitative prediction of the effect of inhomogeneity of the material in sam
ples of various sizes it is necessary to know the course of concentration in the bulk 
of the granular material. 

Let us therefore draw from various locations within the material as well as along 
different directions a set of samples to be analyzed. From the results we determine the 
regression course of concentration and the correlation function of the deviations 
of concentration from the regression course. 

In order to make distinction from the compact material we shall use the subscripts 
r' for the regression course of the concentration Cr ' and its corresponding regression 
variance D~, . The deviations of the concentration c in the sample (of weight GO)) from 
the regressed value Cr' at a sampling point A shall be designated by DCs' or DCs { q",) or 
DCs' ( GO); A). The variance corresponding to the deviations Dcs' shall be designated 
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D;, or D;,( Gw) and shall be termed the stationary part of the inhomogeneity variance. 
For the inhomogeneity variance we may write9 

(12) 

Further we shall designate by R(x; Gw) the correlation function of the deviations bCs" 

defined by: 

R(x; Gw) = E[bcs.(Gw; A) bCs.(Gw; A + x)] . (13) 

The symbol R(x; Gw) shall be used instead of the more simple R(x) in order to distin
guish the granular material whose samples OJ of the same set exhibit the same weight 
Gw, from compact materials for which we have assumed9 that the samples OJ of the 
same set have the same volume (and where the corresponding correlation function 
would be designated R(x; Vw)). For x = 0 the definition gives, of course, R(O; 

Gw) == D;,( Gw). 

In the calculation of the inhomogeneity variance we shall first assume that the 
course of concentration is stationary in the whole volume of the granular material, 
then Cr ' == C and hence D~, = 0 and D2( Gw) = D;\ Gw)). The samples analyzed as 
solutions contain always more than a single particle and thus the concentration 
fluctuations correspond to the model9 valid for phase-homogeneous materials. 
The correlation function R(x; Gw) is then divided into the periodic part Rp(x; Gw) 

and the non-periodic part Rn(x; Gw). For a set of k-times larger samples than OJ we 
shall calculate the non-periodic part of inhomogeneity variance from the equation9 

k Ik 

D~(kGw) = k- 2 I I Rn(xij; Gw) , (14) 
i = 1 j=l 

where the vector xij is given by the positions of the i-th and j·th sample of weight Gw• 

Each of these samples of size kGw is though to be composed in the same manner. 
For the calculation of the periodic part D;(kGw) the reader is referred to cit. 9

• 

In compact materials the correlation function R(x; Vw) is determined by analyses 
made by the microprobe along the line coinciding with the direction of the vector x. 
A longer time of analyses in individual locations eliminates the error of the measuring 
method. The found deviations of the concentration c then correspond only to the in
homogeneity of the material and we can calculate directly the correlation function 

R(x; Vw)' 

For granular materials analyzed in solutions the experimental error generally can
not be neglected and the found correlation function R(x; Gw) thus differs from the 
sought correlation function R(x; Gw) corresponding truly to the inhomogeneity 
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of the granular material. The relation between R(x; GO» and R(x; GO» shall be derived 
as follows: Let us denote by LlC( GO); A) the deviation from c( == cr ,) measured for a 
sample of size GO) taken from a point A of the granular material. This experimental 
deviation consists of the true concentration deviation bcs{ GO); A) and experimental 
error bee GO); A). The correlation function of the found. deviations is given by the 
following definition: 

(15) 

Substituting in the last equation the relation Llc( G; A) = bcs '( GO); A) + be (GO); A) 
then, owing to mutual statistical independence of the deviations be and their inde
pendence on the deviations bcs" the right hand side of Eq. (15) is free of the mean 
values of the mixed products bebcs' and there remains the true correlation function 
R(x; GO») given by Eq. (13) and the expression E[be(G; A) be(GO); A +. x)], which 
for non-zero x takes a zero value and for x = 0 equals the variance of the measuring 
method D 2(be) == D;. The sought correlation function R(x; GO») thus differs from 
the measured correlation function only at x = 0 and namely by the variance of the 
measuring method D;: 

(16) 

The estimate of the variance D; may be obtained for the case of analysis in solutions 
by a series of analyses of the same solution. 

For granular materials which do not satisfy the assumption of stationary course 
of concentration we have to establish first the regression course of the concentration 
in the bulk of the granular material. The inhomogeneity variance is then given as the 
sum of the regression variance, D;, due to the deviation of the regression concentra
tion Cr ' from the mean c (the calculation of Dr' from the course of Cr ' is given in ref. 9), 

and the stationary component D;, corresponding to the deviations bCs' of the con
centration c in individual samples from Cr '. (The determination of the correlation 
function R(x; GO») from the deviations bcs( GO») and the calculation of the variance 
D;,(kGO») has been dealt with previously in the part concerning granular material 
exhibiting stationary course of concentration). The regression variance is practically 
independent of the size of the sample. Thus it is necessary in the separation of the 
smaller portions of the granular material (for instance during filling of the sample 
flask) to take precautions that the whole separated part M (weight G(M)) is not 
taken all from one location, but, instead, composed of several (p) smaller doses Mi 
(weight G(MJ, i = 1,2, ... , p) taken from different points. This should eliminate 
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the regression variance (if we designate by Cr'i the regression concentration at the 
point where the part Mi was taken, the whole sample should be composed so as to 

have t cr'iG(Mi)/G(M) = c). 
i=l 

After elimination of the regression variance by appropriate sampling technique 
(M consisting of Mi parts) the inhomogeneity variance D2(M) caused solely by the 
variable component of the course of concentration, i.e. by the deviations from Cr " 

Thus, according to Eq. (12), D2(M) = D;,(M). This variable component of con
centration is either stationary in the whole volume of the granular material or at 
least in its parts substantially greater than the amounts M i , We may thus, according 
to the preceding text (see the part concerning granular materials with stationary 
course of concentration), determine from the concentrations measured in the samples 
Go> (roughly tenths of a gram) the variances D;,(Mi) (G(Mi) roughly tens of grams). 
The sought variance D2(M) then follows from the expression for the deviations of 
concentration in the sample M: 

6cs .(M) = ± 6cs,(Mi) G(Mi)/G(M) . (17) 
i=l 

Owing to the spatial separation of the samples Mi the practically important case 
is that of the mutual statistical independence of the deviations 6cs.(MJ From Eq. 
(17) then follows for the variance D2(M) = D;,(M) corresponding to the deviations 
6cs.(M) the relation: 

D2(M) = D;,(M) = t D;,(Mi) [G(MJ/G(M)J2 , (18) 
i=l 

DISCUSSION 

Correlation coefficients or correlation functions used to express s~atistical dependence 
of close particles or samples have been dealt with in the literature in various ways. 
Landry4 (see also ref.?) confined himself to expressing statistical dependence in 
terms of the correlation coefficient, a, characterizing the dependence of composition 
of neighbouring particles and derived the dependence of the inhomogeneity variance 
on the size of the sample in the form: 

(19) 

Stange8 has also used correlation, similarly as Landry, in order to characterize 
the imperfectly mixed material. Instead of a single correlation coefficient however, 
he used correlation function. For two selected types of the correlation function he 

Collection Czechoslov. Chem. Commun. [Vol. 42] [1977] 



3012 Bohiicek: 

found using an expression essentially identical to Eq. (14) of this paper, the inhomo
geneity variance of samples of linear shape in dependence on their size. 

Experimental results show that a plot of the dependence of the inhomogeneity 
variance on the size of the sample (in log- log coordinates) exhibits for real materials 
lower slope and a shift toward greater samples in comparison with perfectly mixed 
materials. Landry's approach permits the first factor to be accounted for qualitatively 
(for imperfectly mixed materials, a > 0, the slope of the linear dependence of 
In D2(kv) on In k is smaller than that corresponding to perfectly mixed materials, 
a = 0). In order to explain the shift one has to assume agglomeration of particles 
which need not be realistic. Stange's approach, leading to non-linear dependence (in 
log-log coordinates) between the variance of inhomogeneity and the size of the sample, 
a qualitative comparison leads to more adequate results. 

Correlation function has been also used in paper9, dealing with the inhomogeneity 
of compact materials. In the same work the limitations of the validity of Eq. (I4) 
have been shown. The correlation function R(x) is divided into the non-periodic part, 
Rn(x) and the periodic part, Rp(x). The function to be substituted into Eq. (I4) is 
only Rn(x) and there result the inhomogeneity variances (its non-periodic part) for 
linear, surface and three-dimensional samples. The courses of the functions Rn(x) 
have been specified to which Eq. (14) is applicable. The periodic part, Rp(x), is 
processed in a different manner. With the aid of the correlation function the intra
phase component of inhomogeneity variance was determined, and, for samples 
substantially greater than the size of the phase-homogeneous part in the material, 
also the heterogeneous component of the inhomogeneity variance. The regression 
component and the heterogeneous component for samples smaller than the size 
of the grain were computed without the aid of the correlations. 

Wilson2 has applied correlation coefficients in his work in a somewhat different 
manner in order to determine the inhomogeneity variance of a heterogeneous 
mixture of phase-homogeneous particles. The concentration Ci of the analyzed 
element in each of the m-phases (i = 1, 2, ... , m) was regarded to be a constant 
(ci = cJ In the set ,of samples composed each of k particles the variance of inhomo
geneity was due to the nonuniform representation of the phases in the samples. In the 
calculation of the inhomogeneity variance (or actually its heterogeneous part, see 
ref. 9) the author started from a relation analogous to Eq. (14) of this work. The 
correlation coefficients Rij (in the notation of this paper) described, however, the 
dependence between the deviations dki , dk j of the number of particles of the i-th 
and the j-th phase in the sample from corresponding means. A subsequent assumption 
of multinomial distribution of the deviations dki meant actually that the problem was 
narrowed to one of perfectly mixed materials (for a greater number of particles in the 
samples, k, and with the assumption of multinomial distribution of the deviations 
dki the distribution of the deviations of concentration from c may be approximated 
by the normal distribution, as required by the definition of the perfect mixtureS). The 
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resulting Wilson's formulas, which no longer contain the correlation coefficients 
thus relate only to perfectly mixed materials. It can be shown that these formulas 
are particular cases of the equations derived in this paper: Let us denote ~ the 
volume of the i-th phase and VM the total volume of the compact material from 
which the granular material was prepared. V; = ~!v''vt is the relative number of equally 
large particles made of the material of the i-th phase, v is the volume of the particle, 
s; is the specific weight of the i-th phase and s is the specific weight of the material. 
Eq. (5) from reU takes the form: 

A simple rearrangement gives: 

m m 

D2(kv) = k- 1
{ L v;(SJS)2 (c; - C)2 - [L v;(s;!s) (c; - C)J2} . (21) 

;=1 ;=1 

The second term on the right hand side of the last equation, however, vanishes. 

Owing to the definition of the mean specific weight (s = L ViS;) and the mean 
m m i==l m 

concentration (c = L v;(s;fs) c;) we have L v;(sJs) = 1 and thus L v;(sJs) c = 
;=1 ;=1 ;=1 

= L v/sJs) cJ Eq. (20) thus transform into: 
; = 1 

m 

D2(kv) = k- 1 L v;(SJS)2 (c; - cy (22) 
;=1 

which is identical with the Eq. (10) of this work. For the i-th region in the compact 
material we take the space occupied by the i-th phase and then Cr ; == c;, Sri == s;. 
Because the concentration in the i-th phase, according to the assumption2

, does not 
fluctuate the inhomogeneity variance of single-particle samples from the i-th phase, 
D:(v) , equals its heterogeneous component (c; - cy. 

Equation (10) in comparison with Wilson's equation is somewhat simpler. The main 
difference rests in that the preliminary assessment of the course of concentration 
within the phases in the compact material from which the granular material was 
prepared by means of the microprobe enables the effect of the concentration fluctua
tion within the phases to be incorporated into the variances D:(v) in Eq. (10) or in 
its more general form in Eq. (11). 
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CONCLUSION 

The dependence of the inhomogeneity variance has been derived in the paper on the 
size of the sample for granular perfectly mixed materials as well as for imperfectly 
mixed materials. For perfectly mixed materials we started from the assumption that 
in the compact material, from which the granular material was prepared, the course 
of concentration was known from measurements by the microprobe which permits 
the determination 9 of the inhomogeneity variance for samples equivalent in size 
to a single particle of the granular material. For heterogeneous mixtures of phase
-homogeneous particles it is common to assumel

-
3

, 5, that the concentration of the 
analyzed element within in each particle equals the mean value in the corresponding 
phase; this approach lead to only the heterogeneous component of the inhomogeneity 
variance. The approach adopted in this work also enables the intraphase component 
to be determined, given by the fluctuation of concentration within the phases. In 
addition, the described approach is applicable also to granular materials consisting 
of phase-inhomogeneous materials (e.g. metal chips). 

From the single-particle variance, determined from the parameters of the compact 
material9

, we have derived the variance of inhomogeneity of samples formed by 
several particles of equal weight first for the case of perfectly mixed materials com
posed of equally large particles of the shape same and specific weight and arrived 
ultimately to the general formula for perfectly mixed material composed of particles 
of different size, shape and specific weight. The obtained results provide also the 
practical conclusion that the inhomogeneity variance of a set of samples does not 
depend on the representation of various size classes in individual samples: Instead, 
it depends solely on their average representation in the whole set of samples. 

For materials imperfectly mixed with a statistical dependence of composition of 
individual particles or samples, the calculation of the variance of inhomogeneity in 
dependence on the size of the sample was carried out by the approach9 derived for 
phase"homogeneous compact materials. It has been shown that in the experimental 
determination of the correlation function its initial value, R(O), increases by the vari
ance of the measuring method D;. 

In the discussion the author's approach has been compared with the previously 
published methods utilizing correlation functions to calculate statistical dependence 
of composition of close particles or samples on the variance of inhomogeneity of sam
ples of different size. 
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